GRE Group, incorporating:

Who are we?

GRE is based in Devon, between Exeter and Taunton. We have been designing and building cryogenic cooling and transfer systems since 2013 and currently have equipment at RAL Space, Central Laser Facility, CCFE, Diamond Light Source, European XFEL, European Spallation Source, CERN, along with many private organisations, such as Tokamak Energy, Rolls Royce, Astrazeneca and many more.

• 50 Employees (GRE, Gas and Liquid Controls and Ashbrook Engineering)

What do we do?

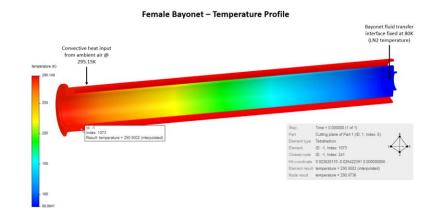
Our in-house 'one-stop shop' can deliver a complete system including:

- Concept design and Specification
- Detailed Mechanical and Electrical Design
- Manufacture (from a single prototype to volume production)
- Custom software and controls
- Testing (factory and on site)
- Installation and commissioning
- Technical support
- Long-term aftercare

Why SIVL?

GRE have been designing and manufacturing cryogenic (helium) cooling systems since 2013 and, originally, bought-in our super-insulated vacuum (cryogenic transfer) lines, for systems such as the one pictured here for the 10J laser amplifier at European XFEL.

Being stereotypical Yorkshiremen/Devonians, we decided that rather than buying in a product the we had little or no control over, we would produce our own!



SIVL Design?

Rather than simply copy what is already on the market, we've always tried to innovate our products based on client needs.

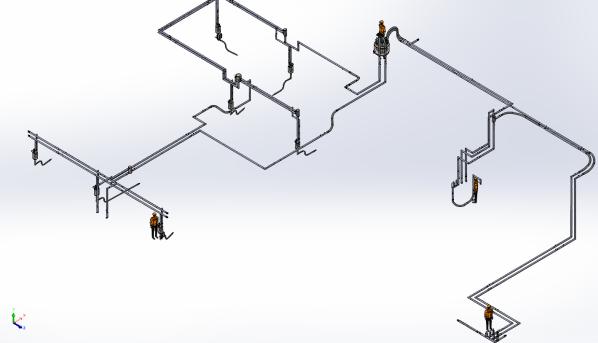
Pictured here over the next slides are just some of the components that were designed specifically for a low-pressure LN2 application at Diamond Light Source, but that have now been rolled out into our wider product range.

SIVL Application?

In addition to the main x-ray nanoprobe beamline, i14 is home to 7 Thermo-Scientific Krios cryo-transmission electron microscopes.

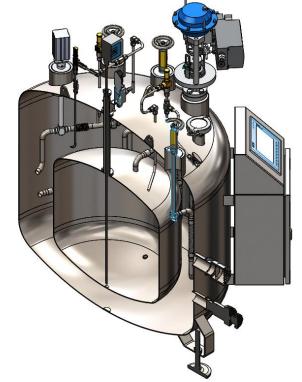
Previously serviced by Dewars, the microscope labs had an LN2 infrastructure fitted circa 19/20, which performed well for a short period of time, then degraded in performance to the point of being unusable.

GRE were contracted to design an LN2 infrastructure that would bring the microscope LN2 serving back to a fully automated level, with stable pressure and minimal flash/boil-off gas levels at the microscope take-off points.



Creative design

In order to manufacture such a system, we started with a 3D 'LIDAR' scan of the inside and outside of the building, which was turned into a CAD model. The pipework system was then woven into the model and split into sections/components for manufacture off-site (the system comprised approximately 70 separate SIVL sections, 4 gas vents, 7 microscope modules, a large capacity phase separator and 4 heated exhaust vents).

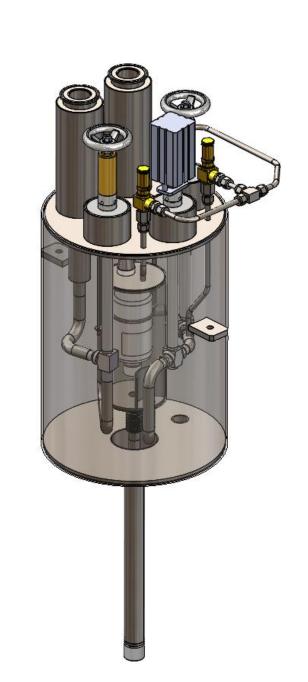


Innovative design

Variable pressure phase separator

Designed to both maintain liquid levels in the SIVL system, due to the extremely pressure-sensitive application, this high-volume phase separator uses microprocessor control to vary the line pressure by automatically heating and/or venting the LN2 reservoir.

Further to a request from the customer, we also integrated BACNET communications into the system control, so that their upper controller could monitor the system.

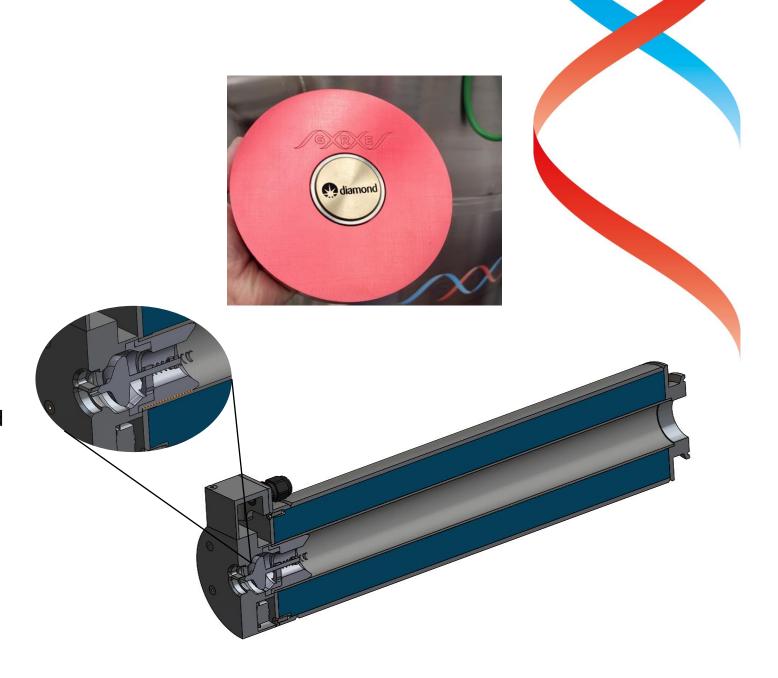


Innovative design

'Liquid at valve' terminal assembly

Again, due to the delicate nature of the equipment serviced by the LN2 supply, we had to ensure that high quality liquid could be provided as close to the client equipment as possible.

Rather than a cumbersome valve train, our designers came up with a single assembly that combined a small gas vent, manual isolation valves, pressure relief and an automatic slam-shut valve for connection to Diamond's oxygen depletion safety system.

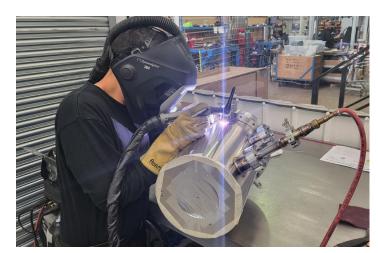


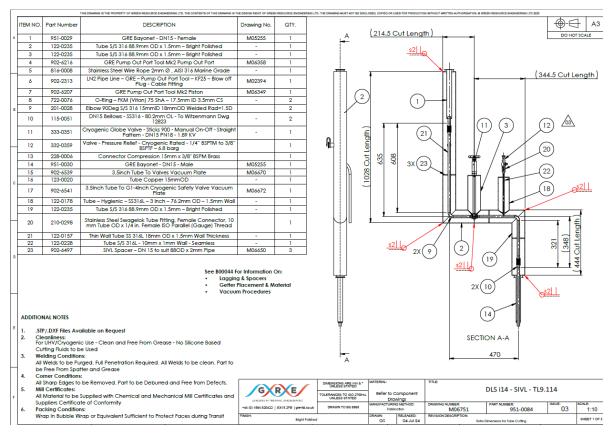
Innovative design

External, heated 'End of line' exhaust assembly

Designed with a heated, sprung, nonreturn valve, to ensure that no atmospheric moisture can track up the inside of the exhaust, to reduce the chance of icing up.

Controlled by a programmable heated tip assembly, the end of line vent is able to stay dry and frost free even when venting N2 at 20 g/s.





Quality, assured

All of GRE's SIVL's are fabricated by experienced welders, all of whom hold suitable qualifications (Coding). All lines are sent to our customers with material certificates, test certificates and full engineering drawings.

Quality, assured

Many of our components are made in-house by our own precision engineering company, Ashbrook Engineering.

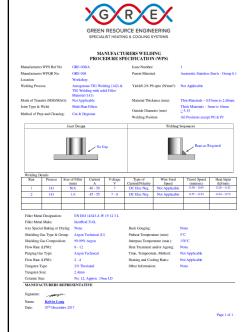
All of the parts and components used in our systems are cut with siliconefree lubricants and are thoroughly cleaned using methods such as ultrasonic baths and hand-cleaning with IPA.

Controlled-environment fabrication

All of GRE's SIVL's are fabricated in our controlled environment, positive pressure 'clean rooms', which are both equipped with dry, filtered air, nitrogen (GN2 and LN2), along with extraction, O2 depletion, vacuum pumping and helium leak test facilities.

Testing

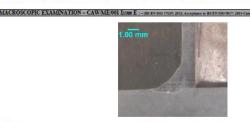
All of GRE's SIVL's are pressure tested (positive pressure to 1.4 x max. operating pressure) and helium leak tested before being subject to thermal shock and being tested again.



Non-destructive testing

If required, we can also provide weld maps/traceability and NDT for our welds

TEST REPORT


CODE A WELD REPORT No:-L17-0895-05,06-01 A. Berry DATE COMPLETE:- 20/11/2017 CLIENT:-(Name) ORDER NUMBER:- PO/47907

High Mount Court, Mid Devon Business Park, Willand, EX15 2FB

Multi Run Fillet Weld in 2.15mm x 10.5mm o.d. Pipe To 8mm Plate Position - Vertical Up Process - TIG

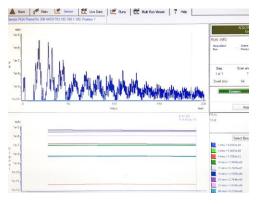
MATERIAL:-(Stated to be) Stainless Steel Group 8 TEST SPECIFICATION:-BS EN ISO 15614-1: 2017

NON DESTRUCTIVE TESTING:								
Inspection	Procedure	Operator	PCN Number	Acceptance Criteria	Test Date	Result		
(BS EN ISO 17637: 2016)	CAW/VI/001 Issue F	D.P	302207	BS EN ISO 5817: 2014 Cat B	15/11/17	Acceptable		
LIQUID PENETRANT	CAW/LPI/001 Issue R	D.P	302207	BS EN ISO 5817: 2014 Cat B	15/11/17	Acceptable		

Marble's Reagent		Immersion	-		
OTHER TESTS : -		Exam	Examiner or Test Body Stamp		
Tests carried out in accordance with	BS EN ISO 15614-1: 201	face of			
Test results were:	Name	L. Rowlands	Signature: /		

Texts created out in the pressure of:

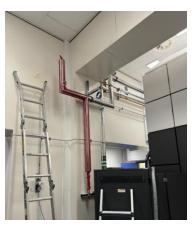
NA


Texts marked for UKAS Accordating in this report are not included in the UKAS Accordating the text marked the pressure of the UKAS Accordating the text marked the pressure of the UKAS Accordating the text marked the pressure of the control of the text marked the pressure of the control of the text marked the pressure of the control of the text marked th

Code A Weld Laboratory Ltd Fourth Avenue Westfield Trading Estate Radstock BA3 4XE Telephone 01761 410410 info@codeaweld.com

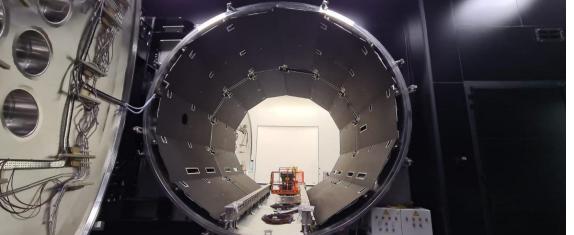
Conditioning

GRE's bespoke SIVL conditioning system.....



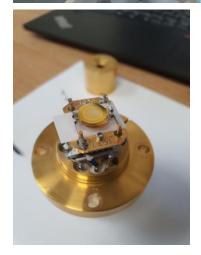
Installation

A few pictures of the system being installed at i14 by the GRE team.


What else do we do?

Cryogenics

Site installations



Vacuum Services

